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Abstract 

Under a logarithmic utility function, this paper studies optimal portfolio 

problem in a discrete-time, finite-horizon setting, where short-selling and 

leveraging are prohibited. We suppose that the random return of risky asset 

depends on the economic environments which are described by a Markov 

chain. Employing dynamic programming theory, we obtain a closed form 

solution of the optimal investment strategy. In addition, with the help of 

stochastic orders, we discuss the properties of the optimal investment strategy, 

and then investigate the impact of economic environment regimes on the 

optimal strategy. Finally, we derive the order of ranking the optimal 

proportions invested in risky asset. 

1. Introduction 

Asset allocation problem is of great importance in finance from both theoretical 

and practical perspectives. The pioneering work of Markowitz [11] first provided a 

mathematically elegant way to formulate the optimal portfolio allocation problem, 
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and it developed the well-known mean-variance approach for optimal portfolio 

allocation. The author considered a single period model and adopted variance (or 

standard deviation) as a measure of risk in the portfolio. The novelty of this approach 

is that it reduces the optimal portfolio allocation problem to the one, where only 

mean and variance of the rates of returns of the risky assets are involved under the 

normality assumption for these rates. This greatly simplifies the problem of optimal 

portfolio allocation and makes a great leap forward in the development of the field. 

Merton [12, 13] studied the optimal portfolio allocation problem in a continuous-time 

framework, which provided a more realistic setting to deal with the problem. He 

employed stochastic optimal control techniques to provide an elegant solution to the 

optimal portfolio allocation problem. His work opens up an important field in 

modern finance, namely, the continuous-time finance. Under the assumption that the 

returns from the risky assets were stationary, Merton derived closed-form solutions to 

the optimal portfolio allocation in a continuous-time setting. In reality, the returns 

from the risky assets sometimes might not be stationary. Boyle and Yang [1] 

considered the optimal asset allocation problem in the presence of non-stationary 

asset returns and transaction costs. They concentrated on the Duffie and Kan [3] 

multi-factor stochastic interest model and adopted a viscosity solution approach to 

deal with the problem. Recently, regime-switching, or Markov-modulated, models 

have received much attention among both researchers and market practitioners. 

Hamilton [10] pioneered the econometric applications of regime-switching models by 

considering a discrete-time Markov-switching autoregressive time series model. 

Since then, regime-switching models, both discrete-time and continuous-time, have 

found a wide range of applications in economics and finance. Some papers with 

regime-switching models in finance include: Elliott and van der Hoek [6] and Cheung 

and Yang [2] for asset allocation, Pliska [14] and Elliott et al. [8], Elliott and Kopp 

[5] for short rate models, Elliott and Hinz [4] for portfolio analysis and chart 

analysis, Elliott et al. [7] and Guo [9] for option pricing under incomplete markets. 

Furthermore, regime-switching models provide a convenient way to describe the 

impact of the structural changes in economic conditions and business cycles on the 

price dynamics. They also provide a pertinent way to describe the non-stationary 

feature of returns of risky assets. More recently, Yin and Zhou [17] and Zhou and 

Yin [18] established a mean-variance portfolio selection problem under Markovian 

regime-switching models in a continuous-time economy. They introduced the 

stochastic linear quadratic control to deal with the problem, and then established 

closed form solutions to mean-variance efficient portfolios and efficient frontiers. 
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With the bankruptcy constraint, Sotomayor and Cadenillas [16] considered an 

optimal consumption and investment problem under a Markovian regime-switching 

model for the asset price dynamics. They determined a consumption-investment 

policy so as to maximize the expected total discounted utility of consumption until 

bankruptcy, and they employed techniques of classical stochastic optimal control to 

derive the regime-switching Hamilton-Jacobi-Bellman equation. 

The rest of this paper is organized as follows. Section 2 gives preliminary and 

models studied in this paper. In Section 3, a closed form solution of the optimal 

investment strategy is obtained. Finally, in Section 4, we discuss the properties of the 

optimal investment strategy, and then investigate the impact of economic 

environment regimes on the optimal strategy. At last, we derive the order of ranking 

the optimal proportions invested in risky asset. 

2. Preliminary and Models 

To begin with, we point out that all random variables in this paper are defined on 

a common probability space ( ).,, PFΩ  

We will study the optimal allocation problem in a discrete-time, finite-horizon 

setting. Throughout this paper, the investment horizon N∈T  is fixed. We assume 

that there are two assets being traded in the market: a risk free asset (say, bank bond) 

and a risky asset (say, stocks). The risk free asset will earn a deterministic return 

1>R  over each single time period. Suppose that { }Tnn ,,2,1,0, …=ξ  is a 

discrete-time and time-homogeneous Markov chain. The random return of the risky 

asset over different time periods will depend on state of the chain 

{ }Tnn ,,2,1,0, …=ξ  at the beginning of that time period. Different states of the 

Markov chain represent different investment environments of the risky asset. We 

further assume that the state space of this Markov chain is { },,,2,1 sZ …=  the 

transition probability matrix is denoted as { }.ijpP =  The wealth of an investor at 

time n will be denoted as ,nW  and the random return in time period [ ]1, +nn  given 

that Zin ∈=ξ  is denoted as .1>i
nR  Then a proportion nα  of nW  will be 

invested in the risky asset with ,10 ≤α≤ n  and the rest will be invested in the risk-

free asset. The constraints ,10 ≤α≤ n  ,,,2,1,0 Tn …=  mean that short selling 

and leveraging are prohibited, and they are able to avoid the possibility that the 
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wealth becomes negative. And the sequence { }1210 ,,,, −αααα T…  which satisfies 

the constraints mentioned above is called investment strategy. 

The wealth of the investor will evolve according to 

[ ( ) ],11 RRWW nnnnn
n α−+α= ξ

+  

for .1,,2,1,0 −= Tn …  

We assume that the utility function takes the following form 

( ) ,ln xxU =  

which is called a logarithmic utility function. 

Given that the investor has an initial endowment w of wealth 0W  and the 

Markov chain is initially at regime ,Zi ∈  the objective of the investor is to 

maximize the utility of the terminal discounted wealth: 

 
{ } ( )

,,|
1

lnmax 00
,,, 110









==ξ











ρ+−ααα
wWi

W
T

T

T

E
…

 (2.1) 

where ,0>w  ,Zi ∈  ρ  is the discount rate. The optimal proportions that solve 

problem (2.1) is called the optimal investment strategy, and is denoted as 

{ }.ˆ,,ˆ,ˆ,ˆ 1210 −αααα T…  

The following assumptions are made throughout this paper: 

(1) for fixed ,Zi ∈  the random returns i
T

ii RRR 110 ,,, −…  are identically 

distributed with common distribution function ( ),⋅iF  having support in [ )∞+,0  and 

are integrable; 

(2) in different time periods, the random returns are independent, i.e., 

,, Zji ∈∀  i
nR  is independent of j

mR  for .nm ≠  

(3) the Markov chain { }Tnn ,,2,1,0, …=ξ  is independent of all random 

returns: 

( ) ( )BRpiiBRi n
nn

n i
niinn

i
nnn ∈==ξ=ξ∈=ξ

+++ PP�
1

,,|, 0011 …  



ASSET ALLOCATION UNDER A LOGARITHMIC UTILITY … 

 

67 

for all ,,,, 10 Ziii nn ∈+…  ( )RB∈B  and ,1,,1,0 −= Tn …  where ( )RB  is the 

Borel -σ field. 

In order to obtain the optimal investment strategy, we first introduce an auxiliary 

function, and then discuss its properties. They turn out to be useful in studying our 

dynamic maximization problem. 

Definition 2.1. Fix any ,Zi ∈  and assume that iR  is a random variable with 

distribution function ( ).⋅iF  Define function ( ) [ ] R→⋅ 1,0:
~

iM  by 

( ) [ ( ( ) )].1ln
~

RRM i
i α−+α=α E  

The next proposition summarizes some basic properties of the function ( ).
~

⋅iM  

Further properties will be explored later. 

Proposition 2.1. For fixed ,Zi ∈  the function ( )⋅iM
~

 is 

1. well-defined on [ ]1,0  under an extra condition that iRln  is integrable, i.e., 

for any [ ],1,0∈α  the random variable ( ( ) )RRi α−+α 1ln  is integrable under the 

condition that iRln  is integrable; 

2. is non-negative; 

3. strictly concave on [ ];1,0  

4. continuous on [ ].1,0  

Proof. 1. For any .10: ≤α≤α  When ,1=α  ( ( ) ) ;ln1ln ii RRR =α−+α  

when ,10 <α≤  ( ) ( ( ) ) ( ).ln1ln1ln RRRRa ii +≤α−+α<−  Hence, by the 

assumption that ( )iRln  is integrable, the conclusion is true. 

2. The conclusion is obviously true because both R and iR  are more than 1. 

3. Choose arbitrarily [ ]1,0, 21 ∈αα  with ,21 α≠α  and ,10 <β<  we have 

( ( ) )21 1
~

αβ−+βαiM  

{ [( ( ) ) ( ( ) ) ]}RRi
2121 111ln αβ−−βα−+αβ−+βα= E  
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{ [( ( ) ) ( ) ]}RRRi +−αβ−+βα= 21 1lnE  

{ [ ( ( ) ) ( ) ( ( ) )]}RRRRRR ii +−αβ−++−αβ= 21 1lnE  

[ ( ( ) ) ( ) ( ( ) )]RRRRRR ii +−αβ−++−αβ> 21 ln1lnE  

[ ( ( ) )]RRi
11 1ln α−+αβ= E  

( ) [ ( ( ) )]RRi
22 1ln1 α−+αβ−+ E  

( ) ( ) ( ),
~

1
~

21 αβ−+αβ= ii MM  

where the strict inequality follows from the fact that function xln  is strict concave 

on ( ).,0 ∞+  This shows the strict concavity of ( ).
~

⋅iM  

4. From the proof of part 1, we know that the collection of random variables 

{ ( ( ) )} 101ln ≤α≤α−+α RRi  is dominated by an integrable random variable. By 

Dominated Convergence Theorem, continuity of ( )⋅iM
~

 follows. 

Remark 2.1. By the above proposition, hereafter, we will always make the extra 

assumption that iRln  is integrable. As a consequence of Proposition 2.1, ( )⋅iM
~

 

achieves its maximum on [ ]1,0  at a unique point, which is denoted as .∗αi  The 

corresponding maximum value ( )∗αiiM
~

 is denoted as 
( )

.
1

iM  

3. Optimal Investment Strategy 

With enough preparation above, now we can return to our problem. In order to 

employ the dynamic programming technique, it is necessary to introduce the 

following concept. 

Definition 3.1. The value function RR →× +ZVn :  is defined as 

( )

}{
( )
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where ,0>w  .Zi ∈  Our objective is to compute ( ),,0 wiV  and then find the 

associated optimal investment strategy. By the theory of Dynamic programming, the 

value function and the optimal investment strategy can be obtained by solving the 

following Bellman Equation: 

( )

( )













=
−=





 ==ξξ

ρ+
=

+++≤α≤

,if,ln

,1,,1,0if

,,|,
1

1
max

,

11110

Tnw

Tn

wWiWV

wiV

nnnnn

n

n

…

E

 

where ,0>w  .Zi ∈  

By using the important foundation above, we can establish the main result in the 

subsequent part, which explores the optimal investment strategy. 

Theorem 3.1. For ,,,1,0 Tn …=  the value functions are given by 

 ( ) ( )

( )








=

−=




 +

ρ+=
−

−

;,ln

,1,,1,0,ln
1

1

,

Tnifw

TnifMw
wiV

nT
inT

n

…

 (3.1) 

for any ,0>w  ,Zi ∈  where 
( )⋅
iM  is defined by 

( ) ( ) ( )∑
=

+ +=

s

j

n
jiji

n
i MpMM

1

11
,    .1,,2,1 −= Tn …  

Moreover, the optimal investment strategy, which solves the Bellman Equation, is 

given by 

( ) ,,ˆ ∗α=α in wi    .1,,1,0 −= Tn …  

Proof. We prove the conclusion by induction. The result is obviously true when 

.Tn =  When ,1−= Tn  we have 

( )wiVT ,1−  

( )




 ==ξξ

ρ+
= −−

≤α≤ −

wWiWV TTTTT
T

11
10

,|,
1

1
max

1
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[ ]wWiW TTT
T

==ξ
ρ+

= −−
≤α≤ −

11
10

,|lnmax
1

1

1

E�  

ρ+
=

1

1
 

[ ( ( ( ) )) ]wWiRRW TTTTTT
T

T

==ξα−+α× −−−
ξ

−−−
≤α≤

−

−
111111

10
,|1lnmax 1

1

E�  

[ ( ( ( ) ))]RRw T
i
TT

T
111

10
1lnmax

1

1

1
−−−

≤α≤
α−+α

ρ+
=

−

E�  

{ [ ( ( ) )]}RRw T
i
TT

T
111

10
1lnmaxln

1

1

1
−−−

≤α≤
α−+α+

ρ+
=

−

E�  

[ ( )]1
10

~
maxln

1

1

1
−

≤α≤
α+

ρ+
=

−
TiMw

T

 

( ( ) ).ln
1

1 1
iMw +

ρ+
=  

So the conclusion is true when .1−= Tn  Now we assume that the results are true 

when 1+= kn  for some ,1,,1,0 −= Tn …  then when ,kn =  

( )wiVk ,  

( )




 ==ξξ
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( )
{ [ ( ( ) )] ( )}1

10 1
1

1lnmaxln
1

1 −−
ξ

≤α≤− +
−

+α−+α+
ρ+

= kT
kk

i
kkkT k

T

MRRw EE  

( )
( ) ( )














++
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11
ln
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( )
( ( ) ),ln

1

1 kT
ikT

Mw
−

−
+

ρ+
=  

where kE  represents expectation under the condition given the information up to 

time .k  Therefore, the conclusion is also true for .kn =  By induction, the theorem 

holds. 

4. Properties of the Solutions 

In Section 3, we obtain expression forms of the value functions and the optimal 

investment strategy. Our objective value function is maximum expected discounted 

utility, which is given by 

( )
( )

( )
.ln

1

1
,0 



 +

ρ+
= T

iT
MwwiV  

We can see that the solution to our utility maximization problem is intimately related 

to the functions 
( )⋅
iM  and its maximizer ∗αi  ( ).Zi ∈  Therefore, it is necessary for us 

to study their properties carefully in this section. 

Definition 4.1. Let X and Y be two random variables such that 

( )[ ] ( )[ ]YfXf EE ≤  

for all increasing and concave functions ,: RE →f  provided the expectations 

exist. Then X is said to be smaller than Y in the second order stochastic order, and it 

is denoted as .YX SSD≤  If distribution functions of X and Y are denoted by ( )⋅G  

and ( ),⋅F  then YX SSD≤  can also be denoted as .FG SSD≤  

Remark 4.1. For more survey on stochastic orders and their relationships, we 

could refer to Shaked and Shanthikumar [15]. 
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The following proposition builds a relationship between 
( )

,
1

iM  
( )

,
1
jM  ., Zji ∈  

It lays nice foundation for later part of this paper. 

Proposition 4.1. Let ., Zji ∈  If ,iSSDj FF ≤  then 

( ) ( )
.

11
ij MM ≤  

Proof. Suppose .iSSDj FF ≤  First, we note that 

( ) [ ]RM j ln0
~

E=  

( ),0
~

iM=  (4.1) 

and for any fixed ,10: ≤α<α  the function ( ) ( )( )Rxxf α−+α= 1ln  is 

increasing and concave. By the definition of second order stochastic order, we get 

( ) [ ( ( ) )]RRM
j

j α−+α=α 1ln
~

E  

[ ( )]jRfE=  

[ ( )]iRfE≤  

[ ( ( ) )]RRi α−+α= 1lnE  

( ).
~

α= iM  (4.2) 

Combining (4.1) and (4.2), we conclude that ( ) ( )α≤α ij MM
~~

 for all [ ].1,0∈α  

Thus, we have 

( ) ( )∗α= jjj MM
~1

 

( )α=
≤α≤

jM
~

max
10

 

( )α≤
≤α≤

iM
~

max
10

 

( )∗α= iiM
~

 

( )
,

1
iM=  

which means the conclusion holds. 



ASSET ALLOCATION UNDER A LOGARITHMIC UTILITY … 

 

73 

Note that, in general, the condition iSSDj FF ≤  is not sufficient to guarantee 

that 
( ) ( )n

i
n

j MM ≤  for .1>n  In the subsequent definition, the structure of the 

transition matrix P also plays a significant role. 

Definition 4.2. Let ( )ija=A  be an mm ×  matrix, supposing that its elements 

satisfy 0≥ija  and .1
1

=∑ =

m

j ija  Then A  is said to be stochastically monotone if 

∑∑
==

≤

m

rk

ik

m

rk

jk aa  

for all mrji ≤≤ ,,1  with .ij ≤  

The following lemma provides a property of a stochastically monotone matrix, 

which will be used later. 

Lemma 4.1. Let ( )ija=A  be an mm ×  matrix, 0≥ija  and ,1
1

=∑ =

m

j ija  

and assume that A  is stochastically monotone. Then, for any non-negative 

increasing (decreasing resp.) column vector ( ),,,, 21 mccc …=c  the column vector 

Ac  is also increasing (decreasing resp.). 

Proof. Suppose that c  is increasing. Put ( ) ,,,, 21 AcB == mBBB …  it is 

sufficient to prove .21 BB ≤  Obviously, 

,

1

11 j

m

j

jcaB ∑
=

=  

,

1

22 j

m

j

jcaB ∑
=

=  

,1: mrr ≤≤∀  put ( )∑ =
−=

m

rj jjjr caaD .12  Hence, 21 BB ≤  is equivalent to 

.01 ≥D  We will prove ( )∑ =
−≥

m

rj rjjr caaD 12  by induction. When ,mr =  due 
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to the fact that A  is stochastically monotone, we have 

( ) mmmm caaD 12 −=  

.0≥  

We assume that when kr =  ( ),2 mk ≤≤  

( )∑
=

−≥

m

kj

kjjk caaD 12  

,0≥  

where the second inequality follows from that A  is stochastically monotone. 

Furthermore, when ,1−= kr  

( ) kkkkk DcaaD +−= −−−− 11,11,21  

( ) ( )∑
=

−−− −+−≥

m

kj

kjjkkk caacaa 1211,11,2  

( ) ( )∑
=

−−−− −+−≥

m

kj

kjjkkk caacaa 11211,11,2  

( )∑
−=

−−=

m

kj

kjj caa

1

112  

,0≥  

where the second and the last inequality due to the same reason as mentioned above. 

Therefore, 01 ≥D  is true by induction, which means that Ac  is also increasing. 

The next proposition gives a sufficient condition to allow us to rank 

( ) ( ) ( )n
s

nn
MMM ,,, 21 …  when .1>n  

Proposition 4.2. Suppose that for any Zji ∈,  with ,ji ≠  we have either 

iSSDj FF ≤  or ,jSSDi FF ≤  i.e., SSD≤  is a total order in all random variables 

{ }., ZiRi ∈  By the transitivity of the total order, we may assume without loss of 
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generality that 

 .321 sSSDSSDSSDSSD FFFF ≤≤≤≤ …  (4.3) 

If the transition matrix P is stochastically monotone, then whenever 1>n  and 

Zji ∈,  with ,ji >  we have 

( ) ( )
.

n
i

n
j MM ≤  

Proof. We prove the conclusion by induction. Following from Proposition 4.1 

and (4.3), we have 

( ) ( ) ( ).11
2

1
1 sMMM ≤≤≤ �  

Suppose that 
( ) ( ) ( )k

s
kk

MMM ≤≤≤ �21  holds for some .1,,2,1 −= Tk …  If P is 

stochastically monotone, then for any ,ij ≤  following from Lemma 4.1, we have 

( ) ( ) ( )∑
=

+ +=

s

l

k
ljlj

k
j MpMM

1

11
 

( ) ( )∑
=

+≤

s

l

k
lilj MpM

1

1
 

 
( ) ( )∑

=

+≤

s

l

k
lili MpM

1

1
 

( )
,

1+= k
iM  

which means that 
( ) ( ) ( ).11

2
1

1
+++ ≤≤≤ k

s
kk

MMM �  By induction, we finish whole 

proof of the conclusion. 

The intuitive meaning of the condition iSSDj FF ≤  is that the investment 

environment in regime i is better than that in regime ,j  which means that the random 

return in regime i is more favorable than that in regime .j  It is natural to ask whether 

we should invest a larger proposition of our wealth into the risky asset. In order to 

study this question, we first give a lemma below. 
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Lemma 4.2. Let .Zi ∈  

(1) The function ( )αiM
~

 is differential with respect to α  on the open interval 

( );1,0  

(2) If the function ( )αiM
~

 achieves its maximum at ( ),1,0∈α∗
i  then 

[( ( ) ) ] .11
1 =α−+α −∗∗ RRR i

i
iE  

Proof. (1) For any .10 21 <ε<ε<  Recall that ( ) [ ( ( ) )].1ln
~

RRM i
i α−+α=α E  

The derivative of the expression inside the expectation with respect to α  is given by 

( )
.

1 RR

RR
i

i

α−+α

−
 

For ,: 21 ε<α<εα  noting that 

( ) ( ) R

RR

RR

RR
i

i

i

α−

−
≤

α−+α

−
11

 

( )
,

1 2 R

RRi

ε−
+

≤  

where the last fraction is integrable by our assumption that iR  is integrable. This 

implies that the collection of random variables 

{( ( ) ) ( )}
21

1
1 ε<α<ε

− −α−+α RRRR ii  

is uniformly integrable, hence, ( )αiM
~

 is differential on the open interval ( )., 21 εε  

Since 1ε  and 2ε  are arbitrarily chosen on ( ),1,0  we conclude that ( )αiM
~

 is 

differential on ( ).1,0  

(2) As ( )αiM
~

 is differential on ( ),1,0  for 10: << hh  we may denote the 

derivative ( ) hiM
d

d
=αα

α
|

~
 as ( ),hDi  where ( ) [( ( ) ) ( )].1

1
RRRRhD ii

i −α−+α= −
E  

If the maximizer ∗αi  lies in the open interval ( ),1,0  then we have the first order 
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necessary condition ( ) ,0=α∗
iiD  which means 

[( ( ) ) ( )] .01
1 =−α−+α −∗∗ RRRR i

i
i

iE  

By multiplying both sides by ,∗αi  then adding the term [( ( ) ) ]1
1

−∗∗ α−+α RRR i
i

iE  

to both sides, we can obtain the conclusion. 

Now we return to the question put forward above Lemma 4.2, the following 

proposition gives an affirmative answer to it. 

Proposition 4.3. Let ., Zji ∈  If ,iSSDj FF ≤  then 

.
∗∗ α≤α ij  

Proof. In order to prove ,
∗∗ α≤α ij  we need to classify the discussions into the 

following three cases: (i) ,0=α∗
j  (ii) ,10 <α< ∗

j  (iii) .1=α∗
j  

In fact, for case (i), the result holds obviously. 

For case (ii), due to the concavity of ( ).
~

⋅iM  Hence, it is sufficient to prove 

( ) ( ) ,0=α≥α ∗∗
iiji DD  which means that it is enough to prove that ( )∗α jiD  is non-

negative. Indeed, following from Lemma 4.2, we have 

( ) [( ( ) ) ( )]RRRRD
i

j
i

jji −α−+α=α −∗∗∗ 1
1E  

[( ( ) ) ( ( ) )]RRRRR j
i

jj
i

j

j

−α−+αα−+α
α

= ∗∗−∗∗
∗

11
1 1
E  

{ [( ( ) ) ]}1
11

1 −∗∗
∗

α−+α−
α

= RRR j
i

j

j

E  

{ [( ( ) ) ] [( ( ) ) ]}11
11

−∗∗−∗∗
∗

α−+α−α−+α
α

= RRRR
R

j
i

jj
j

j

j

EE  

,0≥  



FENGXIA HU 

 

78 

where the last inequality follows from the fact that iSSDj FF ≤  and 

( ) ( ( ) ) 1
1

−∗∗ α−+α−= Rxxf jj  

is increasing and concave on [ ).,0 ∞+  

For case (iii), due to the concavity of the function ( )⋅iM
~

 on the interval [ ],1,0  

we have the following relationship: 

 ( ) ,101 =α⇔≥ ∗
iiD    .Zi ∈  (4.4) 

Thus, ( )1jD  is non-negative if .1=α∗
j  Define function ( ) 11 −−= Rxxh  on 

( ).,0 ∞+  It is an increasing and concave function, and [ ( )] ( ).1i
i DRh =E  Then the 

condition iSSDj FF ≤  implies 

( ) [ ( )]i
i RhD E=1  

[ ( )]jRhE≥  

( )1jD=  

.0≥  

Thus, ( )1iD  is non-negative. Using (4.4) again, we have .1=α∗
i  

References 

 [1] P. P. Boyle and H. L. Yang, Asset allocation with time variation in expected returns, 

Insurance: Math. Econom. 21 (1997), 201-218. 

 [2] K. C. Cheung and H. L. Yang, Asset allocation with regime-switching: discrete-time 

case, Astin Bull. 34(1) (2004), 99-111. 

 [3] D. Duffie and R. Kan, A yield-factor model of interest rates, Math. Fin. 6 (1996),                                                 

379-406. 

 [4] R. J. Elliott and J. Hinz, Portfolio analysis, hidden Markov models and chart analysis 

by PF-diagrams, Internat. J. Theo. Appl. Fin. 5 (2002), 385-399. 

 [5] R. J. Elliott and P. E. Kopp, Mathematics of Financial Markets, 2nd Ed., Springer, 

2004. 



ASSET ALLOCATION UNDER A LOGARITHMIC UTILITY … 

 

79 

 [6] R. J. Elliott and J. van der Hoek, An application of hidden Markov models to asset 

allocation problems, Finance Stochas. 3 (1997), 229-238. 

 [7] R. J. Elliott, L. L. Chan and T. K. Siu, Option pricing and Esscher transform under 

regime switching, Ann. Finan. 1(4) (2005), 423-432. 

 [8] R. J. Elliott, W. C. Hunter and B. M. Jamieson, Financial signal processing, Internat. J. 

Theo. Appl. Finan. 4 (2001), 567-584. 

 [9] X. Guo, Information and option pricings, Quantitative Finan. 1 (2001), 38-44. 

 [10] J. D. Hamilton, A new approach to the economic analysis of nonstationary time series 

and the business cycle, Econometri. 57(2) (1989), 357-384. 

 [11] H. Markowitz, Portfolio selection, J. Finan. 7 (1952), 77-91. 

 [12] R. C. Merton, Lifetime portfolio selection under uncertainty: the continuous time case, 

Review Econom. Statist. 51(3) (1969), 247-257. 

 [13] R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model, J. 

Econo. Theo. 3 (1971), 373-413. 

 [14] S. R. Pliska, Introduction to Mathematical Finance, United States, Blackwell 

Publishing, 1997. 

 [15] M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, 2007. 

 [16] L. R. Sotomayor and A. Cadenillas, Explicit solutions of consumption investment 

problems in financial markets with regime switching, Math. Fin. 19(2) (2009),                                                  

251-279. 

 [17] G. Yin and X. Y. Zhou, Markowitz mean-variance portfolio selection with regime 

switching: from discrete-time models to their continuous-time limits, IEEE Trans. 

Automatic Contr. 49 (2003), 349-360. 

 [18] X. Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime 

switching: a continuous-time model, SIAM J. Contr. Optim. 42 (2004), 1466-1482. 


