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Abstract 

We prove that compact harmonic reversible Finsler manifolds with finite 

fundamental groups must be Riemannian. 

0. Introduction 

In recent years, Finsler geometry has developed rapidly in its global and analytic 

aspects. The present main work is to generalize and improve some famous theorems 

of Riemann geometry to the Finsler setting. 

A Finsler manifold is called harmonic if the mean curvature of all geodesic 

spheres is a function depending only on the radius. In the Riemannian cases, Szabò 

[9] proved that a compact simply connected harmonic Riemannian manifold is 

isometric to one of the compact rank-one symmetric spaces. By using the volume 

comparison, we extend this result to Finsler manifolds in this article. 

Theorem. If ( )FM ,  is a compact harmonic reversible Finsler manifold with 

finite fundamental group, then F is a Riemannian metric. In fact, the universal 

covering space of M is isometric to one of the compact rank-one symmetric 

Riemannian spaces. 
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A Finsler manifold is locally symmetric if the geodesic reflection is a locally 

isometry of the Finsler metric. It is obvious that the geodesic reflection induces the 

minus identity on the tangent spaces, therefore, complete locally symmetric Finsler 

manifolds have harmonic reversible Finsler metrics. Thus the following result is a 

straightforward consequence of the main theorem (cf. [4]). 

Corollary. A compact simply connected locally symmetric Finsler manifold is 

Riemannian. 

We do not know whether our results extend to non-reversible Finsler metrics as 

several arguments only work in the reversible case. It would be interesting to clarify 

this point. 

1. Preliminaries 

In this section, we recall some basics in Finsler geometry and prove some 

auxiliary facts. We follow the presentation in [5], where most concepts are developed 

from Riemannian point of view. We refer to [8] as more exhaustive references in 

Finsler geometry. 

A function [ )∞→ ,0: TMF  will be called a Finsler metric on the manifold M 

if it is smooth outside the zero section and its restriction to each tangent space MTx  

is a quadratically convex norm ( )., ⋅xF  Finsler metrics for which all norms ( )⋅,xF  

are symmetric will be called reversible Finsler metrics. 

By a geodesic we always mean an affine geodesic, i.e., a constant-speed one. For 

a nonzero ,TMv ∈  we denote by vγ  the unique geodesic with initial velocity 

( ) .0 vv =γ�  For every Mp ∈  and { }0\MTv p∈  there is a unique positive definite 

quadratic form vg  on MTp  such that vg  and MTp
F |2  agree to second order at .v  

If V is a non-vanishing vector field on an open set ,MU ⊂  then the family 

{ ( )} UppVg ∈  of quadratic forms defines a Riemannian metric Vg  on .U  If γ  is an 

embedded geodesic and V extends the velocity field of γ  to a neighborhood of ,γ  

then we call Vg  an osculating Riemannian metric for γ  and denote it by .γg  Note 
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that γg  is uniquely determined at every point on γ  but the extension to a 

neighborhood is not unique. 

By [2, Sect. 5.5], there is only one reasonable notion of the volume for 

Riemannian manifolds. However, the situation is different in Finsler geometry. The 

Finsler volume can be defined in various ways and essentially different results may 

be obtained, e.g., [2, 8]. Therefore, it is an interesting and important problem to 

investigate the relations between the volumes and the geometric properties on a 

Finlser manifold. 

The Busemann-Hausdorff volume bhvol  of a Finsler space is that multiple of the 

Lebesgue measure for which the volume of the unit ball equals the volume of 

Euclidean unit ball. Using Brunn-Minkowski theory, Busemann proved that the 

Busemann-Hausdorff volume of a Finsler space equals its Hausdorff measure. Hence, 

from the viewpoint of metric geometry, this is a very natural definition. 

Another volume that is used frequently in Finsler geometry is the so-called 

Holmes-Thompson volume. The Holmes-Thompson volume htvol  of a compact 

Finsler space is the symplectic volume of the unit co-disc bundle divided by the 

volume of the Euclidean unit ball. In the case of Riemannian metrics, all unit tangent 

spaces are isometric to the Euclidean spheres, and we have 

( ) ( ).,vol,vol FMFM bhht =  

On the other hand, in a general Finsler metric, unit tangent spaces may not be 

isometric to each other, and hence one can not expect the equality. We instead have 

the following theorem. 

Theorem 1.1 [3]. Let ( )FM ,  be a compact reversible Finsler manifold. Then 

( ) ( ),,vol,vol FMFM bhht ≤  

with equality if and only if F is a Riemannian metric. 

There exist counterexamples to the inequality when F is nonreversible, e.g., [6]. 

A Finsler manifold is called a -2πC manifold, if all geodesics are closed and of 
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the same length .2π  The following statements are standard whose proofs can be 

found also in [5]. 

Theorem 1.2. If ( )FM ,  be an -n dimensional Finsler -2πC manifold, then the 

ratio 

( )
( )

( )0,vol

,vol

g

FM
Mi

nht

ht

S

=  

is an integer. 

Here ( )0, gn
S  is the canonical Riemannian sphere n

S  of radius one in .1+n
R  

Remark 1.3. Under the assumption of Theorem 1.2, if M is homeomorphic to 

one of the compact rank-one symmetric spaces ( ),, 0gP  i.e., ,
n
S  ,

2n
PC  ,

4n
PH  

,
2

aPC  Weinstein, Yang, and Reznikov showed that 

( ) ( ).,vol,vol 0gFM htht
P=  

2. Harmonic Finsler Manifolds 

A compact Finsler manifold is called a Blaschke manifold, if every minimal 

geodesic of length less than the diameter is the unique shortest path between any of 

its points. Equivalently, for which all cut loci are round spheres of constant radius 

and dimension. Therefore the Blaschke condition implies the -2πC condition, up to a 

scaling of the metric. 

Remark 2.1. For a Blaschke manifold the exponential map restricted to the unit 

tangent sphere defines a great sphere foliation. Since every great sphere foliation of 

sphere is homeomorphic to a Hopf fibration, a simply connected Blaschke manifold 

is actually homeomorphic to compact rank-one symmetric spaces [7, 10]. 

For a nonzero TMv ∈  the mean curvature ( )vmt  of geodesic sphere 

( )( )tS v ,0γ  of radius t about geodesic ( )tvγ  has following Taylor expansion 

( ) ( ) ( ) ( )( ) ( ),3Ric
3

11
tOtvSvvS

t

n
vmt ++−−

−
=  
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where S is -S curvature. Let ( )vmtˆ  be denote the mean curvature of geodesic sphere 

( )( )tS v ,0γ  in vg
γ

 with respect to normal vector ( ).tvγ�  Then 

( ) ( ) ( )( )tSvmvm vtt γ−= �ˆ  

( )[ ],ln v
dt

d
tη=  

where ( )vtη  is the Busemann-Hausdorff volume density of geodesic sphere 

( )( )tS v ,0γ  around ( ).tvγ  From these identities, we can estimate ( )vmt  under a 

Ricci curvature bound and an -S curvature bound. Then we can establish a volume 

comparison on the metric balls [8]. 

A Finsler manifold is called harmonic if the mean curvature of all geodesic 

spheres is a function depending only on the radius. Hence the harmonic Finsler 

manifolds have Einstein metrics and zero -S curvature. A historical break in the 

theory of harmonic Riemannian manifolds was made by Allamigeon when he proved 

the following: A simply connected harmonic Riemannian manifold is either 

diffeomorphic to Euclidean space or is a Blaschke Finsler manifold. The following 

theorem is to put them in a Finsler-geometric setting. For the sake of completeness 

we sketch the proof. 

Theorem 2.2. A simply connected reversible harmonic Finsler manifold M is 

either diffeomorphic to Euclidean space or is a Blaschke Finsler manifold. 

Proof. Suppose there is no conjugate points. Then exponential map is a covering 

map and since M is simply connected, a diffeomorphism. So take a MTv p∈≠ 00  

and an R∈0r  such that the first conjugate point along 
0vγ  is ( ).00

rvγ  Then the 

first conjugate point along vγ  is ( )0rvγ  for all ,MTv p∈  since the mean curvature 

is radial. Note that 0r  is the same for every point in .M  This means that M is a 

Blaschke manifold by the Allamigeon-Warner theorem, cf. [1, Corollary 5.31]. □ 

Now we are ready to prove main theorem using Theorems 1.1, 2.2 and Remarks 

1.3, 2.1. 



CHANG-WAN KIM 

 

22 

 

Theorem 2.3. If ( )FM ,  is a compact harmonic reversible Finsler manifold 

with finite fundamental group, then F is a Riemannian metric. 

Proof. Let M
~

 be the universal covering space of .M  By Theorem 2.2, we know 

M
~

 is a Blaschke -2πC manifold, up to a scaling of the metric, and by Remark 2.1 

we have that M
~

 is homeomorphic to one of the compact rank one symmetric spaces 

.P  Then applying Remark 1.3 gives 

( ) ( ).,
~

vol,vol 0 FMg htht =P  

Since M
~

 is a harmonic Finsler manifold, for all nonzero ,
~

MTv ∈  ,
+

∈ Rt  we 

obtain 

( )( ) ( ) ( )vmvmtS ttv −=γ ˆ�  

,0=  

and the osculating Riemannian space ( ( ){ } )vgM v
γ

γ ,0\
~

 is a harmonic Riemannian 

manifold. On the other hand, in the case of rank one symmetric Riemannian 

manifold, we have 

;sin: 1 tn
t

n −=ηS  

( ) ;cos1sin: 2

2−

−=η
n

t
n ttPC  

( ) ;cos1sin: 2

4
3

−

−=η
n

t
n ttPH  

( ) .cos1sin:
472 ttaP t −=ηC  

Szabò [9] remarked that these are only possibilities for a compact harmonic 

Riemannian manifold. Since 

( )[ ] ( )vmv
dt

d
tt =ηln  
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( )vmtˆ=  

( )[ ],ˆln v
dt

d
tη=  

we have ( ) ( ).ˆ vv tt η=η  By the co-area formula, we obtain 

( ) ( ( ){ } )vgMFM v
bhbh γ

γ= ,0\
~

vol,
~

vol  

( ).,vol 0gbh
P=  

Thus we conclude 

( ) ( )00 ,vol,vol gg htbh
PP =  

( )FMht ,
~

vol=  

( )FMbh ,
~

vol≤  

( ).,vol 0gbh
P=  

We note that the third line is obtained from Theorem 1.1, and hence we obtain 

( ) ( ).,
~

vol,
~

vol FMFM bhht =  

Then by the equality case of Theorem 1.1, F is a Riemannian metric. □ 

References 

 [1] A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik 

und ihrer Grenzgebiete, Vol. 93, Springer-Verlag, 1978. 

 [2] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies in 

Mathematics, Vol. 33, American Mathematical Society, 2001. 

 [3] C. E. Duran, A volume comparison theorem for Finsler manifolds, Proc. Amer. Math. 

Soc. 126 (1998), 3079-3082. 

 [4] C.-W. Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. 88 

(2007), 378-384. 

 [5] C.-W. Kim and J.-W. Yim, Finsler manifolds with positive constant flag curvature, 

Geom. Dedicata 98 (2003), 47-56. 



CHANG-WAN KIM 

 

24 

 

 [6] M. Matsumoto, Theory of curves in tangent planes of two-dimensional Finsler spaces, 

Tensor (N. S.) 37 (1982), 35-42. 

 [7] H. Sato, On topological Blaschke conjecture III, Lect. Notes Math. 1201 (1985),                                                   

242-253. 

 [8] Z. Shen, Lectures on Finsler Geometry, World Scientific, 2001. 

 [9] Z. I. Szabò, The Lichnerowicz conjecture on harmonic manifolds, J. Differ. Geom. 31 

(1990), 1-28. 

 [10] C. T. Yang, Smooth great circle fibrations and an application to the topological 

Blaschke conjecture, Trans. Amer. Math. Soc. 320 (1990), 507-524. 


