
JP Journal of Mathematical Sciences 
Volume 1, Number 1, 2011, Pages 113 

ON PSASAKIAN MANIFOLDS 
Taleshian and N. Asghari 
Abstract 

The object of the present paper is to study ParaSasakian manifold admitting a projective curvature tensor. 


Keywords and phrases: PSasakian manifold, projective curvature tensor, concircular curvature tensor.
Received January 15, 2011 
References 


[1] 
T. Adati and T. Miyazawa, On PSasakian manifolds satisfying certain conditions, Tensor (N.S.) 33 (1979), 173178. 
[2] 
T. Adati and T. Miyazawa, On PSasakian manifolds admitting some parallel and recurrent tensors, Tensor (N.S.) 33 (1979), 287292. 
[3] 
U. C. De and A. Sarkar, On a type of PSasakian manifolds, Math. Rep. (Bucur.) 11(10) (2) (2009), 139144. 
[4] 
U. C. De and A. A. Shaikh, Differential geometry of manifolds, Alpha Science International, Ltd., Oxford, U. K., 2007, pp. 259272. 
[5] 
J. P. Jaiswal and R. H. Ojha, On generalized frecurrent LPSasakian manifolds, Kyungpook Math. J. 49 (1977), 779788. 
[6] 
K. Matsumoto, S. Ianus and I. Mihai, On PSasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen. 33 (1986), 6165. 
[7] 
C. Özgür and M. M. Tripathi, On PSasakian manifolds satisfying certain conditions on the concircular curvature tensor, Turk. J. Math. 31 (2007), 171179. 
[8] 
G. P. Pokhariyal, Study of a new curvature tensor in a Sasakian manifold, Tensor (N.S.) 36(2) (1982), 222226. 
[9] 
B. Prasad, A Pseudo projective curvature tensor on a Riemannian manifolds, Bull. Call. Match. Soc. 3 (2002), 163166. 
[10] 
I. Satō, On a structure similar to almost contact structures, Tensor (N.S.) 30 (1976), 219224. 
[11] 
I. Satō, On a structure similar to almost contact structures, II, Tensor (N.S.) 31 (1977), 199205. 
[12] 
Sh. Shu and A. Yi Han, Hypersurfaces with constant scalar or mean curvature in a unit sphere, Balkan J. Geom. Appl. 14 (2009), 90100. 
[13] 
S. S. Shukla and M. K. Shukla, On jsymmetric PSasakian manifolds, Int. J. Anal. 16 (2010), 761769. 
[14] 
A. Taleshian and N. Asghari, On LPSasakian manifolds satisfying certain conditions on the concircular curvature tensor, Differ. Geom. Dynam. Syst. 12 (2010), 228232.

[15] 
A. Yildiz and M. Turan, A class of Lorentzian aSasakian manifolds, Kyungpook Math. J. 49 (2009), 789799. 



<< Back 

