ON TERNARY QUADRATIC DIOPHANTINE EQUATION

 $2(x^2 + y^2) - 3xy = 43z^2$

M. A. GOPALAN, D. MAHESWARI and J. MAHESWARI

Department of Mathematics SIGC, Trichy-620002 Tamil Nadu, India

Abstract

The ternary quadratic equation $2(x^2 + y^2) - 3xy = 43z^2$ representing cone is analyzed by its nonzero distinct integer points on it. Employing the integer solutions, a few relations between the solutions and special polygonal numbers are presented.

1. Introduction

The ternary quadratic Diophantine equation offers an unlimited field for research because of their variety [1-2]. In particular, one may refer [3-23] for finding points on some specific three dimensional surfaces. This communication concerns with yet another ternary quadratic equation $2(x^2 + y^2) - 3xy = 43z^2$ representing cone for determining its infinitely many integer solutions. Employing integral solutions on the cone, a few interesting relations among the special polygonal and pyramidal numbers are given.

Notations.

$$t_{m, n} = n \left(1 + \frac{(n-1)(m-2)}{2} \right).$$

2010 Mathematics Subject Classification: 11D09.

Keywords and phrases: ternary, quadratic, integer solutions, Figurate numbers. Received April 1, 2015

$$SO_n = n(2n^2 - 1).$$

 $P_n^5 = \frac{n^2(n+1)}{2}.$
 $Pr_n = n(n+1).$
 $OH_n = \frac{1}{3}[n(2n^2 + 1)].$

2. Method of Analysis

Consider the equation

$$2(x^2 + y^2) - 3xy = 43z^2.$$
 (1)

The substitution of linear transformations

$$x = u + v; \quad y = u - v \quad (u \neq v \neq 0) \tag{2}$$

in (1) leads to

$$u^2 + 7v^2 = 43z^2.$$
 (3)

The above equation is solved through different methods and using (2), different patterns of integer solutions to (1) are obtained.

Pattern 1

Write 43 as

$$43 = (6 + i\sqrt{7})(6 - i\sqrt{7}). \tag{4}$$

Assume

$$Z = a^2 + 7b^2, (5)$$

where *a* and *b* are non zero integers.

Using (4) and (5) in (3) and employing the method of factorization, define

$$(u + i\sqrt{7}v) = (6 + i\sqrt{7})(a + i\sqrt{7}b)^2.$$
(6)

Equating real and imaginary parts, we have

$$u = 6a^{2} - 42b^{2} - 14ab,$$
$$v = a^{2} - 7b^{2} + 12ab.$$

Substituting the above values of u and v in (2), the values of x and y are given by

$$x = x(a, b) = 7a^{2} - 49b^{2} - 2ab,$$

$$y = y(a, b) = 5a^{2} - 35b^{2} - 26ab.$$
(7)

11

Thus (5) and (7) represent non zero distinct integral solutions of (1) in two parameters.

Properties.

- $y(a, 2a-1) 5z(a, 2a-1) + 280t_{4,a} + 26t_{6,a} \equiv -70 \pmod{280}$.
- $x(a, a+1) 7z(a, a+1) + 98t_{4,a} + 4t_{3,a} \equiv -98 \pmod{196}$.
- $y(a, 5a-3) + 5z(a, 5a-3) 10t_{4,a} + 52t_{7,a} = 0.$
- $x(a, 3a-2) y(a, 3a-2) 2t_{4,a} + 126t_{4,a} 24t_{8,a} \equiv -56 \pmod{168}$.
- $x(a, a+1) + 7z(a, a+1) 14t_{4,a} + 2pr_a = 0.$
- •

$$x(a, 7a - 5) + y(a, 7a - 5) - 12t_{4,a} + 4116t_{4,a} + 56t_{9,a}$$

 $\equiv -2100 \pmod{5880}$.

- $y(a, 4a-3) z(a, 4a-3) 4t_{4,a} + 672t_{4,a} + 26t_{10,a} \equiv -378 \pmod{1008}$.
- $y(a^2, a+1) + z(a^2, a+1) 6t_{4,a^2} + 28t_{4,a} + 52P_a^5 \equiv -28 \pmod{56}$.
- $z(a, 2a^2 1) + x(a, 2a^2 1) 8t_{4,a} + 168t_{4,a^2} 168t_{4,a} + 2SO_n \equiv -42.$
- •

 $x(a, a + 1) + y(a, a + 1) + z(a, a + 1) - 13t_{4,a} + 77t_{4,a} + 28 pr_a$ = -77(mod 154).

Pattern 2

Write 43 as

$$43 = (-6 + i\sqrt{7})(-6 - i\sqrt{7}).$$
(8)

Using (8) and (5) in (3) and employing the method of factorizations, define

$$(u + i\sqrt{7}v) = (-6 + i\sqrt{7})(a + i\sqrt{7}b)^2.$$
(9)

Equating real and imaginary parts, we have

$$u = -6a^{2} + 42b^{2} - 14ab,$$

$$v = a^{2} - 7b^{2} - 12ab.$$

Substituting the values of u and v in (2), the values of x and y are given by

$$x = x(a, b) = -5a^{2} + 35b^{2} - 26ab,$$

$$y = y(a, b) = -7a^{2} + 49b^{2} - 2ab.$$
 (10)

Thus (5) and (10) represent non zero distinct integral solutions of (1) in two parameters.

Pattern 3

Consider (3) as

$$u^2 - 36z^2 = 7(z^2 - v^2).$$
(11)

Write (11) in the form of ratio as

$$\frac{u+6z}{z+v} = \frac{7(z-v)}{u-6z}$$
$$= \frac{\alpha}{\beta}, \quad \beta \neq 0$$

which is equivalent to the following two equations

$$u\beta - \alpha v + z(6\beta - \alpha) = 0,$$

$$-\alpha u - 7v\beta + z(6\alpha + 7\beta) = 0.$$

On employing the method of cross multiplication, we get

$$u = -6\alpha^{2} + 42\beta^{2} - 14\alpha\beta,$$

$$v = \alpha^{2} - 12\alpha\beta - 7\beta^{2},$$
(12)

$$z = -7\beta^2 - \alpha^2. \tag{13}$$

Substituting the values of u and v in (2), the non zero distinct integral values of x and y are given by

$$x = x(\alpha, \beta) = -5\alpha^2 + 35\beta^2 - 26\alpha\beta,$$

$$y = y(\alpha, \beta) = -7\alpha^2 + 49\beta^2 - 2\alpha\beta.$$
 (14)

Thus (13) and (14) represent the nonzero distinct integer solutions of (1) in two parameters.

Properties.

- $x(a, a+1) 5z(a, a+1) 70t_{4,a} + 52t_{3,a} \equiv 70 \pmod{140}$.
- $x(a, a-1) + 5z(a, 3a-1) + 6t_{4,a} 252t_{4,a} + 52t_{5,a} \equiv 28 \pmod{168}$.
- $y(a, 2a-1) z(a, 2a-1) + 6t_{4,a} 224t_{4,a} + 2t_{6,a} \equiv 56 \pmod{224}$.
- $y(a, 5a-3) + z(a, 5a-3) + 8t_{4,a} 1050t_{3,a} + 4t_{7,a} \equiv 378 \pmod{1260}$.
- $x(a, 3a-2) y(a, 3a-2) 2t_{4,a} + 126t_{4,a} + 24t_{8,a} \equiv -56 \pmod{168}$.
- $x(a, 4a-3) + y(a, 4a-3) + 12t_{4,a} 1344t_{4,a} + 28t_{10,a} \equiv 756 \pmod{2016}$.
- $y(a^2, a+1) + 7z(a^2, a+1) + 14t_{4,a^2} + 4p_a^5 \equiv 0.$
- $y(a, a+1) 7z(a, a+1) 98t_{4,a} + 2pr_a \equiv 98 \pmod{196}$.
- $x(a, 2a^2 1) 13y(a, 2a^2 1) 86t_{4,a} + 2408t_{4,a^2} 2408t_{4,a} = -602.$
- •

$$x(a, 2a^{2}+1) + 13y(a, 2a^{2}+1) + 96t_{4,a} - 2688t_{4,a^{2}} - 2688t_{4,a} + 156oH_{a}$$

= 672.

Pattern 4

Write (11) in the form of ratio as

$$\frac{u+6z}{7(z+v)} = \frac{(z-v)}{u-6z}$$
$$= \frac{\alpha}{\beta}, \quad \beta \neq 0$$

which is equivalent to the following two equations:

$$u\beta - \alpha 7v + z(6\beta - 7\alpha) = 0,$$
$$-\alpha u - \beta v + z(6\alpha + \beta) = 0.$$

On employing the method of cross multiplication, we get

$$u = -42\alpha^2 - 14\alpha\beta + 6\beta^2,$$

$$v = 7\alpha^2 - 12\alpha\beta - \beta^2,$$
 (15)

$$z = -7\alpha^2 - \beta^2. \tag{16}$$

Substituting the values of u and v in (2), the non zero distinct integral values of x and y are given by

$$x = x(\alpha, \beta) = -35\alpha^{2} - 26\alpha\beta + 5\beta^{2},$$

$$y = y(\alpha, \beta) = -49\alpha^{2} - 2\alpha\beta + 7\beta^{2}.$$
(17)

Thus (16) and (17) represent the nonzero distinct integer solutions of (1) in two parameters.

Pattern 5

Write (3) as

$$7v^2 = 43z^2 - u^2. (18)$$

Assume

$$v = 43a^2 - b^2. (19)$$

14

Write 7 as

$$7 = (\sqrt{43} + 6)(\sqrt{43} - 6). \tag{20}$$

Using (19) and (20) in (18), employing the method of factorization, define

$$(\sqrt{43}z + u) = (\sqrt{43} + 6)(\sqrt{43}a + b)^2.$$
⁽²¹⁾

Equating rational and irrational parts, we get

$$u = 258a^{2} + 6b^{2} + 86ab,$$

$$z = z(a, b) = 43a^{2} + b^{2} + 12ab.$$
 (22)

Substituting the values of u and v in (2), we get

$$x = x(a, b) = 301a^{2} + 5b^{2} + 86ab,$$

$$y = y(a, b) = 215a^{2} + 7b^{2} + 86ab.$$
 (23)

Thus (22) and (23) represent the integer solutions of (1).

Properties:

- $x(a, a+1) y(a, a+1) 86t_{4,a} + 2t_{4,a} \equiv -2 \pmod{4}$.
- $x(a, a+1) + y(a, a+1) 516t_{4,a} 12t_{4,a} 344t_{3,a} \equiv 12 \pmod{24}$.
- $x(a, a+1) 5z(a, a+1) 86t_{4,a} + 60 pr_a = 0.$
- $x(a, a+1) + 5z(a, a+1) 516t_{4,a} 10t_{4,a} 292t_{3,a} \equiv 10 \pmod{20}$.
- $y(a, 3a-1) 7z(a, 3a-1) + 86t_{4,a} 4t_{5,a} = 0.$
- $y(a, 5a-3) + 7z(a, 5a-3) 516t_{4,a} 350t_{4,a} 340t_{7,a} \equiv 126 \pmod{420}$.
- $y(a, 3a-2) + z(a, 3a-2) 258t_{4,a} 72t_{4,a} 98t_{8,a} \equiv 32 \pmod{96}$.
- $y(a, 4a-3) z(a, 4a-3) 172t_{4,a} 96t_{4,a} 74t_{10,a} \equiv 54 \pmod{144}$.
- $z(a^2, a+1) + x(a^2, a+1) 344t_{4a^2} 6t_{4a} 196p_a^5 \equiv 6 \pmod{12}$.

•

$$x(a, 2a^{2} - 1) + y(a, 2a^{2} - 1) + z(a, 2a^{2} - 1)$$

-559t_{4,a²} - 52t_{4,a²} + 52t_{4,a} - 184so_a

=13.

Pattern 6

Consider (3) as

$$u^2 + 7v^2 = 43z^2 \times 1. \tag{24}$$

Write 43 as

$$43 = (6 + i\sqrt{7})(6 - i\sqrt{7}).$$
(25)

Write 1 as

$$1 = \frac{(3 + i\sqrt{7})(3 - i\sqrt{7})}{16}.$$
 (26)

Using (5), (25), (26) in (24) and employing the method of factorization, define

$$(u+i\sqrt{7}v) = (6+i\sqrt{7})(a+i\sqrt{7}b)^2 \left(\frac{3+i\sqrt{7}}{4}\right).$$

Equating real and imaginary parts, we have

$$u = \frac{1}{4} [11a^2 - 77b^2 - 126ab],$$
$$v = \frac{1}{4} [9a^2 - 63b^2 + 22ab],$$

As our interest is on finding integer solutions, choose a and b so that u and v are integers. Replacing a by 4a, b by 4b, we have

$$z = 4(a^{2} + 7b^{2}),$$

$$u = 11a^{2} - 77b^{2} - 126ab,$$

$$v = 9a^{2} - 63b^{2} + 22ab.$$
 (27)

Substituting u and v in (2), we have

$$x = x(a, b) = 20a^{2} - 140b^{2} - 104ab,$$

$$y = y(a, b) = 2a^{2} - 14b^{2} - 148ab.$$
(28)

Thus (27) and (28) represent the non zero distinct integral solutions of (1) in two parameters.

Properties:

- $x(a, a+1) 10y(a, a+1) 2752t_{3,a} = 0.$
- $2y(a, 3a-1) z(a, 3a-1) + 504t_{4,a} + 592t_{5,a} \equiv -56 \pmod{336}$.
- $2y(a, 2a-1) + z(a, 2a-1) 8t_{4,a} + 296t_{6,a} = 0.$
- $x(a, a+1) + y(a, a+1) 22t_{4,a} + 154t_{4,a} + 252 pr_a \equiv -154 \pmod{308}$.
- $x(a, 2a^2 1) + z(a, 2a^2 1) 24t_{4,a} + 448t_{4,a^2} + 104so_a 448t_{4,a} = -112.$
- $y(a, 2a^2 + 1) + z(a, 2a^2 + 1) 6t_{4,a^2} 56t_{4,a^2} 56t_{4,a} + 4440H_a = 14.$
- $x(a, 5a-3) y(a, 5a-3) 18t_{4,a} + 3150t_{4,a} 88t_{7,a} \equiv -1134 \pmod{3780}$.
- $x(a, 4a-3) z(a, 4a-3) 16t_{4,a} + 2688t_{4,a} + 104t_{10,a} \equiv -1512 \pmod{4032}$.
- $y(a, 7a-5) z(a, 7a-5) + 2t_{4,a} + 2058t_{4,a} + 296t_{9,a} \equiv -1050 \pmod{2940}$.
- •

$$x(a, 3a-2) + y(a, 3a-2) + z(a, 3a-2) - 26t_{4,a} + 1134t_{4,a} + 252t_{8,a}$$

 $\equiv -504 \pmod{1512}.$

Pattern 7

Consider 1 as

$$1 = \frac{(3 + i4\sqrt{7})(3 - i4\sqrt{7})}{121}.$$
(29)

Using (25), (29), (5) in (24) and employing the method of factorization, define

$$(u+i\sqrt{7}v) = (6+i\sqrt{7})(a+i\sqrt{7}b)^2 \left(\frac{3+i4\sqrt{7}}{11}\right).$$

Equating real and imaginary parts, we have

$$u = \frac{1}{11} [-10a^2 + 70b^2 - 378ab],$$
$$v = \frac{1}{11} [27a^2 - 189b^2 - 20ab].$$

As our interest is on finding integer solutions, choose a and b so that u and v are integers. Replacing a by 11a, b by 11b, we have

$$z = 121(a^{2} + 7b^{2}),$$

$$u = -110a^{2} + 770b^{2} - 4158ab,$$

$$v = 297a^{2} - 2079b^{2} - 220ab.$$
 (30)

Substituting u and v in (2), we have

$$x = x(a, b) = 187a^{2} - 1309b^{2} - 4378ab,$$

$$y = y(a, b) = -407a^{2} + 2849b^{2} - 3938ab.$$
 (31)

Thus (30) and (31) represent the non zero distinct integral solutions of (1) in two parameters.

Pattern 8

Also, 1 is represented as

$$1 = \frac{(1+i3\sqrt{7})(1-i3\sqrt{7})}{64}.$$
 (32)

Using (25), (32), (5) in (24) and employing the method of factorization, define

$$(u+i\sqrt{7}v) = (6+i\sqrt{7})(a+i\sqrt{7}b)^2 \left(\frac{1+i3\sqrt{7}}{8}\right).$$

Equating real sand imaginary parts, we have

$$u = \frac{1}{8} \left[-15a^2 + 105b^2 - 266ab \right],$$
$$v = \frac{1}{8} \left[-30a^2 + 19b^2 - 133ab \right].$$

As our interest is on finding integer solutions, choose a and b so that u and v are integers. Replacing a by 8a, b by 8b, we have

$$z = 64(a^{2} + 7b^{2}),$$

$$u = -120a^{2} + 840b^{2} - 2128ab,$$

$$v = 152a^{2} - 1064b^{2} - 240ab.$$
 (33)

19

Substituting u and v in (2), we have

$$x = x(a, b) = 32a^{2} - 224b^{2} - 2368ab,$$

$$y = y(a, b) = -272a^{2} + 1904b^{2} - 1888ab.$$
 (34)

Thus (33) and (34) represent the non zero distinct integral solutions of (1) in two parameters.

Pattern 9

Also, 1 is represented as

$$1 = \frac{(-3 + i\sqrt{7})(-3 - i\sqrt{7})}{16}.$$
(35)

Using (25), (5) and (35) in (24) and employing the method of factorization, define

$$(u+i\sqrt{7}v) = (6+i\sqrt{7})(a+i\sqrt{7}b)^2 \left(\frac{-3+i\sqrt{7}}{4}\right).$$

Equating real and imaginary parts, we have

$$u = \frac{1}{4} [-25a^{2} + 175b^{2} - 42ab],$$
$$v = \frac{1}{4} [3a^{2} - 21b^{2} - 50ab].$$

As our interest is on finding integer solutions, choose a and b so that u and v are integers. Replacing a by 2a, b by 2b, we have

$$z = 4(a^{2} + 7b^{2}),$$

$$u = -25a^{2} + 175b^{2} - 42ab,$$

$$v = 3a^{2} - 21b^{2} - 50ab.$$
 (36)

Substituting u and v in (2), we have

$$x = x(a, b) = -22a^{2} + 154b^{2} - 92ab,$$

$$y = y(a, b) = -28a^{2} + 196b^{2} + 8ab.$$
 (37)

Thus (36) and (37) represent the integer solutions of (1) in two parameters.

Pattern 10

Consider 1 as

$$1 = \frac{(-3 + i4\sqrt{7})(-3 - i4\sqrt{7})}{121}.$$
(38)

Using (5), (25) and (38) in (24) and employing the method of factorization, define

$$(u+i\sqrt{7}v) = (6+i\sqrt{7})(a+i\sqrt{7}b)^2 \left(\frac{-3+i4\sqrt{7}}{11}\right).$$

Equating real and imaginary parts, we have

$$u = \frac{1}{11} [-46a^{2} + 322b^{2} - 294ab],$$
$$v = \frac{1}{11} [21a^{2} - 147b^{2} - 92ab].$$

As our interest is on finding integer solutions, choose a and b so that u and v are integers. Replacing a by 2a, b by 2b, we have

$$z = 121(a^{2} + 7b^{2}),$$

$$u = -506a^{2} + 3542b^{2} - 3234ab,$$

$$v = 231a^{2} - 1617b^{2} - 1012ab.$$
 (39)

Substituting u and v in (2), we have

$$x = x(a, b) = -275a^{2} + 1925b^{2} - 4246ab,$$

$$y = y(a, b) = -737a^{2} + 5159b^{2} - 2222ab.$$
 (40)

Thus (39) and (40) represent the integer solutions of (1) in two parameters.

Pattern 11

Write 1 as

$$1 = \frac{(-1+i3\sqrt{7})(-1-i3\sqrt{7})}{64}.$$
(41)

Using (5), (25) and (41) in (24) and employing the method of factorization, define

$$(u+i\sqrt{7}v) = (6+i\sqrt{7})(a+i\sqrt{7}b)^2\left(\frac{-1+i3\sqrt{7}}{8}\right).$$

Equating real and imaginary parts, we have

$$u = \frac{1}{8} \left[-27a^2 + 189b^2 - 238ab \right],$$
$$v = \frac{1}{8} \left[17a^2 - 119b^2 - 54ab \right].$$

As our interest is on finding integer solutions, choose a and b so that u and v are integers. Replacing a by 8a, b by 8b, we have

$$z = 64(a^{2} + 7b^{2}),$$

$$u = -216a^{2} + 1512b^{2} - 1904ab,$$

$$v = 136a^{2} - 952b^{2} - 432ab.$$
(42)

Substituting u and v in (2), we have

$$x = x(a, b) = -80a^{2} + 560b^{2} - 2336ab,$$

$$y = y(a, b) = -352a^{2} + 2464b^{2} - 1472ab.$$
 (43)

Thus (42) and (43) represent the integer solutions of (1) in two parameters.

22

3. Conclusion

In this paper, we have presented different patterns of integer solutions to the ternary quadratic equation $2(x^2 + y^2) - 3xy = 43z^2$ representing the cone. As the Diophantine equations are rich in variety, one may attempt to find integer solutions to other choices of equations along with suitable properties.

References

- L. E. Dickson, History of Theory of Numbers and Diophantine Analysis, Vol. 2, Dove Publications, New York, 2005.
- [2] L. J. Mordell, Diophantine Equations, Academic Press, New York, 1970.
- [3] R. D. Carmichael, The Theory of Numbers and Diophantine Analysis, New York, Dover, 1959.
- [4] M. A. Gopalan and D. Geetha, Lattice points on the hyperboloid of two sheets $x^2 6xy + y^2 + 6x 2y + 5 = z^2 + 4$, Impct. J. Sci. Tech. 4 (2010), 23-32.
- [5] M. A. Gopalan, S. Vidyalakshmi and A. Kavitha, Integral points on the homogeneous cone $z^2 = 2x^2 7y^2$, Diophantus J. Math. 1(2) (2012), 127-136.
- [6] M. A. Gopalan, S. Vidyalakshmi and G. S. Sumathi, Lattice points on the hyperboloid of one sheet $4z^2 = 2x^2 + 3y^2 4$, Diophantus J. Math. 1(2) (2012), 109-115.
- [7] M. A. Gopalan, S. Vidyalakshmi and K. Lakshmi, Integral points on the hyperboloid of two sheets $3y^2 = 7x^2 z^2 + 21$, Diophantus J. Math. 1(2) (2012), 99-107.
- [8] M. A. Gopalan, S. Vidyalakshmi and S. Mallika, Observation on hyberboloid of one sheet $x^2 + 2y^2 z^2 = 2$, Bessel J. Math. 2(3) (2012), 221-226.
- [9] M. A. Gopalan, S. Vidyalakshmi, T. R. Usha Rani and S. Mallika, Integral points on the homogeneous cone $6z^2 + 3y^2 2x^2 = 0$, Impet. J. Sci. Tech. 6(1) (2010), 7-13.
- [10] M. A. Gopalan, S. Vidyalakshmi and G. Sumathi, Lattice points on the elliptic paraboloid $9x^2 + 4y^2 = z$, Adv. Theo. Appl. Math. 7(4) (2012), 379-385.
- [11] M. A. Gopalan, S. Vidyalakshmi and T. R. Usha Rani, Integral points on the non homogeneous cone $2z^2 + 4xy + 8x 4z = 0$, Global J. Math. Math. Sci. 2(1) (2012), 61-67.
- [12] M. A. Gopalan, S. Vidyalakshmi and K. Lakshmi, Lattice points on the elliptic paraboloid $16y^2 + 9z^2 = 4x$, Bessel J. Math. 3(2) (2013), 137-145.

23

- [13] M. A. Gopalan, S. Vidyalakshmi and J. Uma Rani, Integral points on the homogeneous cone $x^2 + 4y^2 = 37z^2$, Cayley Math. 2(2) (2013), 101-107.
- [14] M. A. Gopalan, S. Vidyalakshmi and A. Kavitha, Observation on the hyberboloid of two sheets $7x^2 3y^2 = z^2 + z(y z) + 4$, Internat. J. Latest Res. Sci. Technol. 2(2) (2013), 84-86.
- [15] M. A. Gopalan and B. Sivakami, Integral points on the homogeneous cone $z^2 = 3x^2 + 6y^2$, IOSR J. Math. 8(4) (2013), 24-29.
- [16] M. A. Gopalan and V. Geetha, Lattice points on the homogeneous cone $z^2 = 2x^2 + 8y^2 6xy$, Indian J. Sci. 2 (2013), 93-96.
- [17] M. A. Gopalan, S. Vidhyalakshmi and D. Maheswari, Integral points on the homogeneous cone $2x^2 + 3y^2 = 35z^2$, Indian J. Sci.7 (2014), 6-10.
- [18] M. A. Gopalan, S. Vidhyalakshmi and J. Uma Rani, On the quadratic diophantine equation $6(x^2 + y^2) 8xy = 21z^2$, Sch. J. Eng. Tech. 2(2A) (2014), 108-112.
- [19] K. Vidyalakshmi Meena, S, M. A. Gopalan and I. K. Priya, Integral points on the cone $3(x^2 + y^2) 5xy = 47z^2$, Bull. Math. Statist. Res. 2(1) (2014), 65-70.
- [20] M. A. Gopalan, S. Vidhyalakshmi and S. Nivetha, On the quadratic Diophantine equation $4(x^2 + y^2) 7xy = 31z^2$, Diophantus J. Math. 3(1) (2014), 1-7.
- [21] K. Meena, S. Vidyalakshmi, M. A. Gopalan and I. K. Priya, Integral points on the cone $4x^2 + 3y^2 = 28z^2$, Bull. Math. Statist. Res. 2(1) (2014), 47-53.
- [22] M. A. Gopalan, S. Vidhyalakshmi and J. Shanthi, Lattice points on the homogeneous cone $8(x^2 + y^2) 15xy = 56z^2$, Sch. J. Phy. Math. Stat. 1(1) (2012), 29-32.
- [23] M. A. Gopalan, S. Vidhyalakshmi and S. Mallika, On ternary quadratic Diophantine equation $8(x^2 + y^2) 15xy = 80z^2$, BOMSR 2(4) (2014), 429-433.