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ON TERNARY QUADRATIC DIOPHANTINE EQUATION
2(x* + y*) —3xy = 4377
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Abstract

The ternary quadratic equation 2( X2 y2 )—3xy = 4372 representing cone is

analyzed by its nonzero distinct integer points on it. Employing the integer
solutions, a few relations between the solutions and special polygonal numbers

are presented.

1. Introduction

The ternary quadratic Diophantine equation offers an unlimited field for research
because of their variety [1-2]. In particular, one may refer [3-23] for finding points
on some specific three dimensional surfaces. This communication concerns with yet
another ternary quadratic equation 2(x2 + y2 )—3xy = 4372 representing cone for

determining its infinitely many integer solutions. Employing integral solutions on the
cone, a few interesting relations among the special polygonal and pyramidal numbers

are given.

Notations.

(n —Dém - 2)).

tm,n = n(l+
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So, = n(2n2 -1).

2
+1
py =11 T (”2 ),
Pr, =n(n+1).

OH, = %[n(2n2 +1)]

2. Method of Analysis

Consider the equation
2(x? +y?) = 3xy = 4372 (D
The substitution of linear transformations
x=u+v, y=u—-v (u#v=0) 2)
in (1) leads to
W2+ Ty =432, 3)

The above equation is solved through different methods and using (2), different

patterns of integer solutions to (1) are obtained.

Pattern 1
Write 43 as
43 =(6+iN7)(6-iN7). 4)
Assume
Z=a>+17b%, )

where a and b are non zero integers.

Using (4) and (5) in (3) and employing the method of factorization, define

(u+iNTv) = (6 +iNT)(a+iNTb)>. (6)
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Equating real and imaginary parts, we have
u = 6a* - 42b* — 14ab,
v=a®-7b* +12ab.
Substituting the above values of # and v in (2), the values of x and y are given by
x = x(a, b) = Ta*> — 49b> - 2ab,
y = y(a, b) = 5a° — 35b° — 26ab. 7

Thus (5) and (7) represent non zero distinct integral solutions of (1) in two
parameters.

Properties.

o y(a,2a—1)-5z(a, 2a —1)+ 2804 , + 261 , = —70(mod 280).

o x(a,a+1)-7z(a, a+1)+981y , + 413 , =-98(mod196).

® y(a, 5a-3)+5z(a, 5a —3) - 1014 , +52t; , = 0.

o x(a,3a~-2)~-y(a,3a—2) -2ty , +126t4 , — 2413 , = -56(mod 168).

o x(a,a+1)+7z(a,a+1)—14t4 , +2pr, = 0.

x(a, Ta = 5)+ y(a, Ta —5) =12ty , + 411614 , + 5619 ,
= —2100((mod 5880).
o y(a,4a -3)—z(a, 4a —3) -4ty , + 67214 , + 26113 , = —378(mod 1008).

2

o y(a®, a+1)+z(d* a+1)-6t 2 2Biy g+ 52P> = —28(mod 56).

4

o 2(a,2a® — 1)+ x(a, 2a° 1) =81y , + 1681, > — 1681, , +250, = —42.

x(a, a+1)+ y(a, a+1)+z(a, a+1) =13ty , + 77ty , +28pr,

= —77(mod 154).



12 M. A. GOPALAN, D. MAHESWARI and J. MAHESWARI

Pattern 2

Write 43 as

43=(-6+iN7)(-6-iV7).

Using (8) and (5) in (3) and employing the method of factorizations, define

(u+iV7v)=(=6+iN7)(a+iNTb)>

Equating real and imaginary parts, we have
u=—6a” +42b* ~14ab,
v =a® —7b* —12ab.

Substituting the values of # and v in (2), the values of x and y are given by

x = x(a, b) = =5a* + 35b% — 26ab,

y = y(a, b) = -Ta> + 49b* - 2ab.

®)

€))

(10)

Thus (5) and (10) represent non zero distinct integral solutions of (1) in two

parameters.
Pattern 3

Consider (3) as
u® =36z =7(z2 =v?).
Write (11) in the form of ratio as

u+6z _ 7(z—v)

z+v u-—6z

:%, B=0

which is equivalent to the following two equations
uP —awv + z(6p — a) =0,

—owu —TvB + z(60. + 7B) = 0.

(1)
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On employing the method of cross multiplication, we get
u =—-602 +42p% — 14ap,
v=o’-12af — 7>, (12)
z=-7p% —a’. (13)

Substituting the values of u and v in (2), the non zero distinct integral values of x and
y are given by

x = x(a, B) = =50 + 352 — 2608,
y = y(a, B) = 702 + 498> - 20. (14)

Thus (13) and (14) represent the nonzero distinct integer solutions of (1) in two
parameters.

Properties.

® x(a,a+1)—=5z(a, a+1)=70ty , +52t3 , = 70(mod 140).

® x(a,a—1)+5z(a, 3a —1)+ 6ty , — 252t , + 5215 , = 28(mod 168).

o y(a. 2a—1)= z(a, 2a— 1)+ 6ty , — 2241, , + 2t , = 56(mod 224).

o y(a.5a—3)+ z(a, Sa—3) + 8ty , —1050t5 , + 417 , = 378(mod 1260).

o x(a,3a-2)-y(a,3a—2)-2ty , +126t, , + 2415 , = —56(mod 168).

o x(a, 4a—3)+ y(a, 4a —3) + 121, , — 13441, , + 281, , = 756(mod 2016).
o y(a® a+1)+7z(a% a+1)+ 141‘4’“2 +4p2 =0.

o y(a,a+1)-7z(a, a+1)-98ty , +2pr, =98(mod196).

o x(a, 2a® 1)~ 13y(a, 2a* —1) - 8614 , + 24081, > — 240814, = ~602.
[ J

x(a, 2a* +1) +13y(a, 2a* +1)+96t, , — 26881, > — 26881, , +1560H,,

=672.
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Pattern 4
Write (11) in the form of ratio as

u+6z _(z-v)
7(z+v) u-6z

o

-5

which is equivalent to the following two equations:

B+#0

up—a7v+z(6—7a) =0,
—ow — By + z(60.+ B) = 0.
On employing the method of cross multiplication, we get
u = —420% — 140 + 62,
v =Ta% —1208 - B2, (15)

2=-7a2 —B2. (16)

Substituting the values of u and v in (2), the non zero distinct integral values of x and

y are given by
x = x(o, B) = =350.2 — 260 + 5p2,

y = y(a, B) = —49a% — 20 + 7p>. a7

Thus (16) and (17) represent the nonzero distinct integer solutions of (1) in two

parameters.

Pattern 5
Write (3) as
w2 =432 —u>. (18)
Assume

v =43a’ - b>. (19)
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Write 7 as
7= (V43 +6) (V43 - 6).
Using (19) and (20) in (18), employing the method of factorization, define
(V43z+u) = (V43 +6)(V43a +b)*.
Equating rational and irrational parts, we get
u = 258a* + 6b* + 86ab,
z = z(a, b) = 43a* + b* +12ab.
Substituting the values of # and v in (2), we get
x = x(a, b) = 301a® + 5b> + 86ab,
y = y(a, b) = 215a> + 7b> + 86ab.
Thus (22) and (23) represent the integer solutions of (1).

Properties:

® x(a,a+1)-y(a,a+1)-8614 , + 2ty , = —2(mod 4).

® x(a, a+1)+ y(a, a+1)=5161y , — 12ty , — 34413 , = 12(mod 24).

® x(a,a+1)-5z(a,a+1)-86ty , +60pr, =0.
® x(a, a+1)+5z(a, a+1)=516ty , — 1014 , — 29213 , = 10(mod 20).

o y(a,3a~-1)-7z(a, 3a —1)+86ty , —4t5 , = 0.

15

(20)

21

(22)

(23)

o y(a, 5a —3)+7z(a, 5a —3) = 51614 , — 3501 , — 340t7 , = 126(mod 420).

o y(a,3a—2)+z(a,3a—2) - 258ty , — 72ty , — 9813 , = 32(mod 96).
o y(a, 4a -3) - z(a, 4a —3) =172ty , — 9614 , — 74110, , = 54(mod 144).

o z2(a’, a+1)+x(d?, a+1)=3441, 5 =61y, ~196p2 = 6(mod12).
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x(a, 2a®> =1)+ y(a, 2a® =1) + z(a, 2a*> - 1)
—559t4’a2 —52t4’a2 +52t4 , —184s0,
=13.

Pattern 6

Consider (3) as
u? + v = 4372 x1. (24)
Write 43 as
43=(6+iN7)(6-iV7). (25)

Write 1 as

1

:(3+iﬁ1)é3—iﬁ)_ 26)

Using (5), (25), (26) in (24) and employing the method of factorization, define

(u+iVTv) = (6+iNT)(a+ iﬁb)2(3 Tﬁ].

Equating real and imaginary parts, we have

u= %[na2 —77b% —126ab],

y= %[9012 —63b2 + 22ab],

As our interest is on finding integer solutions, choose @ and b so that # and v are

integers. Replacing a by 4a, b by 4b, we have
z=4(a® +7b%),
u =11a* = 77b* —126ab,

v =9a% — 63b% + 22ab. 27
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Substituting u and v in (2), we have
x = x(a, b) = 20a’ —140b* — 104ab,
y = y(a, b) = 2a> —14b> — 148ab. (28)

Thus (27) and (28) represent the non zero distinct integral solutions of (1) in two

parameters.
Properties:

® x(a,a+1)-10y(a, a +1)—2752t3 , = 0.
o 2y(a, 3a—1) - z(a, 3a — 1)+ 5041y , + 59215 , = ~56(mod 336).
e 2y(a, 2a—1)+ z(a, 2a —1) - 8t, , + 29615 , = 0.

o x(a,a+1)+ y(a, a+1)—-22ty , +154t4 , +252pr, = —154(mod 308).

o x(a,2a’ ~1)+z(a, 2a* ~1)- 241, , +4481, 5 +10450, — 4481y o =—-112.

o y(a,2a’>+1)+z(a, 24> +1)=61, 5 =561, =561 ,+4440H, =14.

o x(a,5a—3)- y(a, 5a—3)~18ty , +3150t, , — 8817 , =—1134(mod 3780).
o x(a,4a~3)~z(a, 4a—3)~1614 , + 268814 , +1041( , =—1512(mod 4032).

o y(a,7a~5)~z(a, Ta—5)+ 2ty 4 +205814 , + 29619 , =—1050(mod 2940).

x(a,3a-2)+ y(a,3a-2)+z(a,3a—2) - 26ty , +11341, , + 25213 ,
= ~504(mod 1512).
Pattern 7

Consider 1 as

_ (3+i4ﬁ)(3—i4ﬁ)_

! 121

(29)
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Using (25), (29), (5) in (24) and employing the method of factorization, define

(u+ix/7v)=(6+iﬁ)(a+iﬁb)2(#].

Equating real and imaginary parts, we have

u= 1—11[ ~10a + 70b% — 378ab],

v = %[27012 — 18952 — 20ab].

As our interest is on finding integer solutions, choose a and b so that # and v are

integers. Replacing a by 11a, b by 11b, we have
z = 121(a® + 7b%),
u = —110a” + 770b* — 4158ab,
v = 297a% — 20795% — 220ab. (30)
Substituting u and v in (2), we have
x = x(a, b) = 187a — 1309b> — 4378ab,
y = y(a, b) = —407a* + 2849 — 3938ab. 31)

Thus (30) and (31) represent the non zero distinct integral solutions of (1) in two

parameters.
Pattern 8

Also, 1 is represented as

1 (32)

C(1+i3V7)(1-i3V7)
- o .

Using (25), (32), (5) in (24) and employing the method of factorization, define

(u+iV7v)= (6+iﬁ)(a+iﬁb)2(1+i§ﬁ)
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Equating real sand imaginary parts, we have

u= %[ ~154% +105b% — 266ab],

y = %[ —30a® + 196> = 133ab].

As our interest is on finding integer solutions, choose @ and b so that # and v are
integers. Replacing a by 8a, b by 8b, we have

7 = 64(a® + 7b%),
u = —120a® + 840b% — 2128ab,

v = 152a% — 1064b% — 240ab.

(33)
Substituting « and v in (2), we have
x = x(a, b) = 324 — 224 — 2368ab,
y = y(a, b) = =272a” +1904b> — 1888ab. (34)

Thus (33) and (34) represent the non zero distinct integral solutions of (1) in two
parameters.

Pattern 9

Also, 1 is represented as

1:(—3+n/7)(—3—m/7)_ 35)
16
Using (25), (5) and (35) in (24) and employing the method of factorization, define

4

(u+iNTv) = (6+iﬁ)(a+iﬁb)2(_3+lﬁj.
Equating real and imaginary parts, we have

u

%[ —254% +175b° — 42ab],

y = %[3542 —21b% = 50ab].
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As our interest is on finding integer solutions, choose a and b so that u and v are

integers. Replacing a by 2a, b by 2b, we have

z = 4a* +7b%),

u = —25a* +175b* - 42ab,

v =3a%—21b% = 50ab. (36)
Substituting u and v in (2), we have

x = x(a, b) = —22a> +154b* — 92ab,

y = y(a, b) = 284> +196b> + 8ab. (37)

Thus (36) and (37) represent the integer solutions of (1) in two parameters.
Pattern 10

Consider 1 as

_ (34T (=3 -i447)

! 121

(38)

Using (5), (25) and (38) in (24) and employing the method of factorization, define

(u+iVTv)= (6+iﬁ)(a+iﬁb)2(%)

Equating real and imaginary parts, we have

w = o[ ~46a> +322b% - 294ab),

v = %[21612 —1476% - 92ab].

As our interest is on finding integer solutions, choose a and b so that # and v are

integers. Replacing a by 2a, b by 2b, we have
7 =121(a® + 7b%),
u = =506a° + 3542b° — 3234ab,

v = 231a’® —1617b% — 1012ab. (39)
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Substituting u and v in (2), we have

x(a, b) = =275a* + 1925b% — 4246ab,

=
Il

y(a, b) = —=737a> + 5159b% — 2222ab. (40)

y
Thus (39) and (40) represent the integer solutions of (1) in two parameters.
Pattern 11

Write 1 as

(A1+B3V7)(-1-i3V7)
= 0 .

1 (41)

Using (5), (25) and (41) in (24) and employing the method of factorization, define

(utid7v)= (6+iﬁ)(a+iﬁb)2(%]_

Equating real and imaginary parts, we have

u = %[ —27a* +189b° — 238ab],

y = %[17512 —1196% - 54ab].

As our interest is on finding integer solutions, choose a and b so that # and v are

integers. Replacing a by 8a, b by 8b, we have
7 = 64(a’ + 7b%),
u = -216a* +1512b* — 1904ab,

v =136a” — 952b% — 432ab. (42)

Substituting # and v in (2), we have

x = x(a, b) = —80a’* + 560b> — 2336ab,

y = y(a, b) = —=352a° + 2464b°> — 1472ab. (43)

Thus (42) and (43) represent the integer solutions of (1) in two parameters.
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3. Conclusion

In this paper, we have presented different patterns of integer solutions to the

ternary quadratic equation 2()c2 + y2 )—3xy = 4372 representing the cone. As the

Diophantine equations are rich in variety, one may attempt to find integer solutions to

other choices of equations along with suitable properties.
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