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Abstract

This paper concerns with the study of constructing sequences of Diophantine

triples (a, b, ¢) such that the product of any two elements of the set added by a

polynomial with integer coefficient is a perfect square.

1. Introduction

The problem of constructing the sets with property that product of any two of its

distinct elements is one less than a square has a very long history and such sets have

been studied by Diophantus. A set of m positive integers {a;, a5, as, ..., a,,} is said

to have the property D(n), ne z—{0}(q; *a;)+n, it is a perfect square for all

1<i< j<m and such a set is called a Diophantine m-tuple with the property

D(n).

Many mathematicians considered the construction of different formulations of

Diophantine triples with the property D(n) for any arbitrary integer n and also, for
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any linear polynomials in n. In this context, one may refer [2-19] for an extensive

review of various problems on Diophantine triples. This paper aims at constructing

sequences of Diophantine triples where the product of any two members of the triple

with the polynomial with integer coefficients satisfies the required property.

2. Method of Analysis

Sequence I

An attempt is made to form a sequence of Diophantine triples (a, b, ¢),

(b, ¢, d), (c, d, e),... with the property D(1+ 3").
Case I
Let a =3" and b =3" +1.

Let ¢ be any non-zero integer.

Consider
ac +1+3" = p?
which yields
(3")c+1+3" = p.
Also,
be+1+3" = ¢°
gives

(3" +1)c+1+3" = g%

Using some algebra,

(3" +1)p* —3"qg = (1+3").

Using the linear transformations
p=X+3"T,

g=X+@"+1)T

ey
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and T =1, we have
X=3"+1 and p=2-3"+1.
From (1),

c=4.3"+3.

Hence (a, b, ¢) is the Diophantine triple with the property D(1+ 3").

Case 11
Let b=3"+1and c =4-3" +3.
Let d be any non-zero integer.

Consider
bd +1+3" = B2,
ed +1+3" = 2.
On simplification, we have
(3" +1)d + (1+3") = 2,
(4-3"+3)d +(1+3") =%
Using some algebra,
p? —by? = (c—b)(1+3").
Using the linear transformations
B=X+bT and y=X+cT
and T =1, we have
X =2(3"+1) and B=3-3"+3.
From (4),

d=9-3"+8.
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Hence (b, ¢, d) is the Diophantine triple with the property D(1+ 3").
Case III
Letc=4-3"+3and d =9-3" +8.
Let e be any non-zero integer.

Consider,

ce+1+3" =8, ©6)

de +1+3" =02 7
Using some algebra,

dd* — 0% = (d — c)(1+3").
Using the linear transformations,
0=X+cT and 6=X+dT
and T =1, we have
X=6-3"+5 and §=10-3" +8.
From (5),
e=25-3"+2I.

Thus (c, d, ) forms a Diophantine triple with the property D(1+ 3").

From all the above cases, (a, b, ¢), (b, ¢, d), (c, d, ), ... will form a sequence

of Diophantine triples.

Some numerical examples are tabulated

n (a, b, ¢) (b, c, d) (c. d, e) D(1+3")
0 1, 2,7) (2.7.17) (7. 17, 46) D(2)
] (3, 4, 15) (4,15,35) | (15, 35, 96) D(4)
2 (9,10,39) | (10,39,89) | (39,89, 246) | D(10)
3 (27,28, 111) | (28,111, 251) | (11, 251, 696) | D(28)
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Sequence 11
Deriving another sequence of Diophantine triples (a,b,c),(b,c,d),(c,d,e),...
with the property D(1+ 3").
Casel
Let @ =3" and b =3" +3.

Let ¢ be any non-zero integer.

Consider
ac+1—3n=p2 (8)
which yields
(3")c+1-3" = p?,
be+1-3" = 4°
gives

(3" +3)c+1-3" = ¢°.

Using some algebra,

(3" +3)p* —3"¢> =3(1-3").
Using the linear transformations

p=X+3"T,

g=X+3"+3)T
and T =1, wehave X =3" +1and p=2-3" +1.

From (8),
c=4-3"+5.

Hence (a, b, c) is the Diophantine triple with the property D(1 —3").
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Case 11
Let b=3"+3 and c=4-3" +5.

Let d be any non-zero integer.

Consider
bd +1-3" = p>,
ed +1-3" =2
On simplification, we have
(3" +3)d +(1-3") = B2,
(43" +5)d +(1-3") = ¥~
Using some algebra,
ep? —by* = (c —b)(1+3").

Using the linear transformations

B=X+bT and y=X +cT
and T =1, we have

X =23"+2) and B=3-3"+7.
From (9),

d=9-3"+16.

Hence (b, ¢, d) is the Diophantine triple with the property D(1 —3").

Case I1I
Letc=4-3"+5and d =9-3" +16.
Let e be any non-zero integer.

Consider
ce+1-3" = 52,

de +1-3" = 02,

(€))

(10)
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Using some algebra,
dd? —c0% = (d —c)(1-3").
Using the linear transformations,
d=X+cT and 6=X+dT
and T =1, we have
X=63"+9 and 8=10-3" +14.
From (10),

e =25-3"+39.

Thus (c, d, ) forms a Diophantine triple with the property D(1—3").

Case IV
Letd =9-3" +16 and e = 25-3" + 39.
Let f be any non-zero integer.

Consider
df +1-3" = a?,
of +1-3" =)\2.
Using some algebra,
o> -2 =(e—d)(1-3").
Using the linear transformations,

oo=X+dTl and A =X +eT

and T =1, we have
X =15-3"+25 and o =24-3"+41.
From (11),

f =64-3"+105.
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Thus (d, e, f) forms a Diophantine triple with the property D(1 —3").

From all the above cases, (a, b, ¢), (b, ¢, d), (c, d, e), (d, e, f), ... will form a
sequence of Diophantine triples.
Some numerical examples are tabulated
n (a, b, ¢) (b, c, d) (c.d,e) D(1-3")
1 (3,6,17) (6,17, 43) (17, 43, 114) D(-2)
2 9,12, 41) (12, 41, 97) (41, 97, 264) D(-8)
3 (27,30,113) | (30,113,259) | (113, 259, 714) D(-26)
4 (81, 84, 329) | (84, 329, 745) | (329, 745, 2064) D(-80)
Sequence IT1
Forming a sequence of Diophantine triples (a, b, c), (b, ¢, d), (c, d, e), ... with
the property D(8 - 22").
Casel
Let a =2%" 2" — 1 and b= 22" + 2" 1,
Let ¢ be any non-zero integer.
Consider
ac +8-2%" = p?
which yields
(22” _ 2n+1 _ 1)C + 8 . 22}’1 — p2’
bc+8-2%" =42 (12)
gives

(2% + 2" _ 1)+ 827" = ¢
Using some algebra,
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Using the linear transformations
p=X+(22" 2" 1T,
g=X+Q¥+2" 1
and T =1, we have
X =241 and p=2-22"-2"1
From (12),
c=4.27"
Hence (a, b, ¢) is the Diophantine triple with the property D(8 - 22").
Case II
Let b =22" 42" —1 and ¢ = 4-2%".

Let d be any non-zero integer.

Consider
bd +8-2%" = B2,
cd +8-2°" = 2.
Using some algebra,
ep? —by? = (c - b)(8-22").
Using the linear transformations

B=X+bT and y=X+cT
and T =1, we have
X =202" +2") and p=3-2""+4.2" —1.
From (13),

d=9-2""+6-22-1.

Hence (b, ¢, d) is the Diophantine triple with the property D(8 - 22").

35
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Case I1I
Letc=4-2""and d =9 2% +6-2" - 1.
Let e be any non-zero integer.

Consider
ce+8-22 =82,
de +8-2°" = 2, (14)
Using some algebra,
dd? — c0% = (d - ¢)(8-2°").
Using the linear transformations,
d=X+cT and 6=X+dT
and T =1, we have
X=6-2"+2-2" and §=10-22"+2-2"
From (14),
e=25-22"+10-2" - 1.
Thus (c, d, e) forms a Diophantine triple with the property D(8 - 22").
Case IV
Let d =9-2°" +6-2" —1 and e = 25-2%" +10-2" —1.
Let f be any non-zero integer.

Consider
df +8-22" = a?,
of +8-22" =2, (15)
Using some algebra,

ea> —d)\? = (e—d) (8 2%).
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Using the linear transformations,
o0=X+dl and A=X+eT

and T =1, we have
X=15-2""+8-2" -1 and o=24-22"+14.2" 2.
From (15),
f=64-22"132.2" —4.
Thus (d, e, f) forms a Diophantine triple with the property D(8 - 2>").
Case V
Let e=25-22"410-2" =1 and f =64-22" +32.2" 4.

Let g be any non-zero integer.

Consider

eg +8- 22" = ¢2,

fo +8-2%" = ¢%. (16)
Using some algebra,

%~ eq?(f ~€)8-27".
Using the linear transformations,
0=X=¢eT and ¢=X = (T
and T =1, we have
X =40-2% +18-2" -2 and ¢=65-22”+28-2"—3.
From (16),
g=169-2"+78.2" -9,

Thus (e, f, g) forms a Diophantine triple with the property D(8 - 2°").
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From all the above cases, (a, b, c¢), (b, ¢, d), (c, d, e), (d, e, f), (e, f, g), ...

will form a sequence of Diophantine triples D(8 - 22").

n (a, b, ¢) b, ¢, d) (c,d, e) D(8-22)
0 (-2, 2, 4) (2, 4, 14) (4, 14, 34) D(8)

1 (-1, 7, 16) (7, 16, 47) (16, 47, 119) D(32)
2 (7, 23, 64) (23, 64, 167) (64, 167, 439) D(128)
3 (47,79, 256) (79, 256, 623) (256, 623, 1679) D(512)
4| (223,287, 1024) | (287, 1024, 2399) | (1024, 2399, 6559) | D(2048)

3. Conclusion

To conclude one may construct a sequence of Diophantine triples with suitable

properties.
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