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Abstract 
 

In this paper, we will utilize the results already known in differential geometry 

and provide an intuitive understanding of the lognormal distribution. This 

approach leads to the definition of new concepts to provide new results of 

statistical importance. These results may be of particular interest to 

mathematical physicists. In general, it has been shown that the parameter 

space is not of constant curvature. We found that all three sectional, mean and 

scalar curvatures are a complicated function of the shape parameter of 

lognormal distribution. In addition, we calculated some invariant quantities, 

such as sectional curvature, Ricci curvature, mean curvature and scalar 

curvature. 
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